#### TUESDAY, AUGUST 28, 2012

#### **TISK Problems**

- 1. Factor completely  $-5x^2 + x^3 + 6x$
- 2. Are A, B, and C collinear?
- 3. If  $\overline{AB} \cong \overline{BC}$ , find BC.

#### <sup>3x + 5</sup> A Homework: p. 104-105 #22-30 even, 33 & 34

6x - 7

#### We will have 3 Mental Math questions.

### Homework Check

24) a. Given
b. × Prop. of =
c. ÷ Prop. of = (or × Prop. of =)
25) a. Given
b. × Prop. of =
c. Distributive Prop.
d. - Prop. of =
e. ÷ Prop. of =

- 26) a. Given
  - b. Segment Addition Postulate
  - c. Substitution Property of Equality
  - d. Given

e. - Prop. of =

27) a.  $m \measuredangle TUV = 90, m \measuredangle XWV = 90,$   $m \measuredangle 1 = m \measuredangle 3$ b. Substitution Prop. of = c. Angle Addition Postulate d.  $m \measuredangle 1 + m \measuredangle 2 = m \measuredangle 3 + m \measuredangle 4$ e. Substitution Prop. Of = f.  $m \measuredangle 2 = m \measuredangle 4$ 

#### §2.5 Verifying Segment Relationships



# **Marking Pictures**

Mark the diagram with the given information.

AB = 12, BC = 12, AD = 10, DC = 14



# **Marking Pictures**

Mark the diagram with the given information.

 $\overrightarrow{FG}$  bisects  $\overline{EH}$ 



### **Marking Pictures**

# Mark the diagram with the given information. *m₄ABC* = *m₄CBD*



#### Prove that AC = BD given that AB = CD.



| Given: $EF = GH$<br>Prove: $\overline{EG} \cong \overline{FH}$ |                    |
|----------------------------------------------------------------|--------------------|
| ••                                                             |                    |
|                                                                | G H                |
| Statements                                                     | Reasons            |
| 1) $EF = GH$                                                   | 1) Given           |
| 2) <i>EF</i> + <i>FG</i> = <i>GH</i> + <i>FG</i>               | 2) + prop of =     |
| 3) $EG = EF + FG$ , $FH = GH + FG$                             | 3) Segment + Post. |
| 4) $EG = FH$                                                   | 4) Transitive      |
| 5) $\overline{EG} \cong \overline{FH}$                         | 5) Def of $\cong$  |

#### Homework

• p. 104-105 #22-30 even, 33 & 34

- Due to some strange scheduling this week.... We will do our Problem-Solving day tomorrow.
  - Your write-ups won't be due until Sept. 7.